ÉVOLUTION PHYSICO-CHIMIQUE DES EAUX DU LÉMAN

PHYSICAL-CHEMICAL CHANGES IN THE WATERS OF LAKE GENEVA

Campagne 2009

PAR

Jérôme LAZZAROTTO

STATION D'HYDROBIOLOGIE LACUSTRE (INRA-UMR/CARRTEL), BP 511, FR - 74203 THONON-LES-BAINS Cedex

François RAPIN

SECRÉTARIAT DE LA COMMISSION INTERNATIONALE POUR LA PROTECTION DES EAUX DU LÉMAN ACW - Changins - Bâtiment DC, CP 1080, CH - 1260 NYON 1

RÉSUMÉ

L'hiver 2008-2009 a été froid, mais n'a pas permis une homogénéisation complète de la masse d'eau. Le brassage a atteint 150 m en février 2009. A cette date, lors de ce brassage partiel, les eaux du fond du lac sont faiblement réoxygénées avec 4.11 mgO₂/L.

Le stock de phosphore remis à disposition dans les couches superficielles est rapidement consommé. Les concentrations de nutriments suggèrent une limitation du phytoplancton par le phosphore dès la mi-mars. La période d'eau claire est nettement marquée avec 10.9 m le 25 mai 2009.

Durant la phase automnale, un important pic de <u>Mougeotia gracillima</u> est à l'origine de fortes concentrations de carbone, phosphore et azote particulaires.

Le stock contenu dans le lac en phosphore continue de diminuer, la concentration moyenne en phosphore total est de 22.8 µgP/L.

ABSTRACT

The winter of 2008-2009 was cold, but did not permit complete mixing of the water mass. Churning reached a depth of 150 m in February 2009. At this date, during this partial churning, the water at the bottom of the lake was slightly reoxygenated and contained 4.11 mgO₂/L.

The phosphorus reserve that had been made available again in the surface layers was soon used up. The nutrient concentrations suggest that the phytoplankton was phosphorus-limited from mid March. The clear-water phase was clearly marked, with a value of 10.9 m on 25 May 2009.

During the autumnal phase, a major peak of <u>Mougeotia gracillima</u> gave rise to high concentrations of particulate carbon, phosphorus and nitrogen.

The total phosphorus reserve continued to fall; the mean concentration was 22.8 µgP/L.

1. MÉTHODES

Les stations de mesure des paramètres physico-chimiques dans les eaux du Léman sont représentées sur la figure 1 :

- SHL2 au centre du Grand Lac entre Evian et Lausanne (coord. CH : 534.700/144.950) qui correspond à la partie la plus profonde du lac (-309.7 m),
- GE3 au centre du Petit Lac dans la fosse de Chevrens entre Coppet et Chevrens (coord. CH : 506.100/128.040) (-71 m).

Ce rapport traitera de l'étude du Grand Lac à la station SHL2. L'étude du Petit Lac à GE3 fait l'objet d'un rapport tous les 5 ans, le prochain est prévu pour la campagne 2010.

La station SHL2 est admise comme représentative du Grand Lac au point de vue physico-chimique quant à l'évolution à long terme (BLANC et *al.*, 1993). Les stocks et concentrations moyennes pondérées sont calculés à partir des mesures obtenues sur les prélèvements à différentes profondeurs en ce point SHL2 (Annexes 1 et 2).

Profondeurs et fréquence d'échantillonnage - station SHL2 (Grand Lac)

Afin de déterminer l'évolution de la qualité des eaux du Grand Lac, les prélèvements sont effectués à 20 profondeurs au point SHL2 :

0; 2.5; 5; 7.5; 10; 15; 20; 25; 30; 35; 50; 100; 150; 200; 250; 275; 290; 300; 305 et 309 m.

La fréquence d'échantillonnage est adaptée au cycle biologique du lac : lorsque l'activité biologique et la composition chimique du lac changent, la fréquence du suivi est plus importante. Elle est prévue : mensuelle de décembre à février, mois pendant lesquels l'activité biologique est réduite ; bimensuelle de mars à novembre, lorsque l'activité est intense et que le lac subit de fortes et rapides fluctuations des conditions environnementales.

Il y a eu 19 campagnes de prélèvements en 2009, réparties selon les dates indiquées dans le Tableau 1.

Les prélèvements sont effectués selon des techniques uniformisées par l'INRA-UMR CARRTEL de Thonon-les-Bains (Unité Mixte de Recherche entre l'INRA et l'Université de Savoie ; Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes Limniques), qui procède également à diverses mesures "in situ". Lors de chaque prélèvement, une sonde de pression est couplée à la bouteille de prélèvement afin de déterminer la profondeur réelle de prélèvement. L'étude des relevés de la sonde indique des écarts toujours inférieurs à 2 m par rapport à la profondeur théorique et une variabilité allant de 0 à 3 m. Ces écarts sont considérés comme acceptables pour la présente étude.

Les échantillons sont analysés par le laboratoire de chimie de l'INRA-UMR CARRTEL de Thonon-les-Bains. Les méthodes utilisées sont validées deux fois par an par des analyses inter-laboratoires auxquelles participent environ 20 laboratoires. Les résultats obtenus en 2009 par les différents laboratoires sont concordants (STRAWCZYNSKI, 2010). Les analyses sont validées par des cartes de contrôle de justesse et de répétabilité. Les incertitudes élargies des méthodes sont indiquées dans l'Annexe 3.

De plus, lors de chaque campagne, des profils verticaux (mesures à chaque mètre) de température, oxygène dissous, conductivité électrique, pH, turbidité, chlorophylle *a* in vivo et luminosité sont réalisés à l'aide d'une sonde multiparamètre immergeable (BLANC et *al.*, 1993). La figure 2 représente deux profils de sonde effectués à deux périodes distinctes : le 2 mars 2009 lors du brassage partiel (le pic d'oxygène à 225 m n'a pas d'explication claire, il peut provenir d'un apport par les rivières ou d'une hétérogénéité dans le brassage des eaux) et le 20 juillet 2009 alors que l'activité phytoplanctonique est importante.

Campagne n°	Date	Campagne n°	Date
1	21 janvier 2009	11	6 juillet 2009
2	16 février 2009	12	20 juillet 2009
3	2 mars 2009	13	13 août 2009
4	17 mars 2009	14	31 août 2009
5	6 avril 2009	15	9 septembre 2009
6	21 avril 2009	16	21 septembre 2009
7	12 mai 2009	17	6 octobre 2009
8	25 mai 2009	18	16 novembre 2009
9	18 juin 2009	19	7 décembre 2009
10	29 juin 2009		

Tableau 1 : Dates des campagnes de prélèvement.Table 1 : Dates of the sampling campaigns.

Figure 1 :Situation des points de prélèvement.Figure 1 :Location of the sampling stations.

2. RÉGIME THERMIQUE ET INFLUENCE SUR LA STRATIFICATION OU LE MÉLANGE DES EAUX

L'hiver 2008-2009 a été plus froid que les années précédentes, la température de l'air a été négative durant la majorité du mois de janvier (QUETIN, 2010).

Cet hiver froid n'a cependant pas permis une homogénéisation thermique. Le minimum de température est atteint le 16 février avec 5.91°C en surface. Ce refroidissement est plus important que les deux années précédentes (6.4°C et 6.9°C). La température du fond est stable toute l'année entre 5.53 et 5.54°C. Ce refroidissement de la surface et les vents assez intenses (QUETIN, 2010) permettent un brassage partiel du lac au mois de février jusqu'à 150 m. Ce brassage, bien que partiel, est plus important que les deux années précédentes où il n'a pas dépassé 100 m.

Ce brassage permet la réoxygénation partielle de la colonne d'eau avec 9.94 mgO₂/L à 200m, puis la concentration chute pour atteindre 4.11 mgO₂/L au fond. A partir du mois de mars, la stratification thermique débute avec un épilimnion jusqu'à 7.5 m.

Les figures 3 à 7 représentent l'évolution saisonnière et interannuelle de la température de l'air et des eaux du lac. Les températures moyennes à 50 et 100 m sont à la baisse cette année, alors qu'à 200 m et au fond, la température continue d'augmenter depuis 2006, année du dernier brassage total. La figure 6 indique une dynamique de stratification plus graduelle de 0 à 20 m, alors qu'en 2008, la couche 0-10 m était homogène en température.

La température maximale observée est de 24.3°C en surface le 18 juin 2009. La température moyenne des eaux de surface est nettement supérieure en 2009 par rapport à 2008. Cependant, l'épaississement de l'épilimnion à partir du printemps est moins important que les années précédentes comme on peut l'observer sur la figure 7.

- 34 -

Figure 3 b :Température moyenne hebdomadaire de l'air à la station de Pully de 1986 à 2009.Figure 3 b :Mean weekly air temperature at the Pully station from 1986 to 2009.

Figure 4 : Evolution de la température moyenne de l'eau aux profondeurs 50, 100, 200 et 309 mètres dans le Léman - Grand Lac (SHL2).

Figure 4 : Change in the mean annual water temperature at depths of 50, 100, 200 and 309 meters, Lake Geneva - Grand Lac (SHL2).

- 35 -

Figure 6 : Temperature of the water in the surface layers (0, 5, 10, 15 et 20 m) Lake Geneva - Grand Lac (SHL2).

 Figure 7 :
 Température des eaux du Léman (Grand Lac - SHL2) en fonction de la profondeur.,

 Figure 7 :
 Water temperature in Lake Geneva (Grand Lac - SHL2) as a function of depth.

Le brassage permet de remettre à disposition les nutriments dans la colonne d'eau à partir des couches profondes. Ce brassage n'étant que partiel, la redistribution des nutriments est effectuée sur une plus faible partie de la colonne d'eau que lors des brassages complets, surtout pour le phosphore.

Au moment du brassage partiel des eaux, la concentration en phosphore réactif soluble varie entre 16 et 18 μ gP/L jusqu'à 150 m. L'effet du brassage est donc beaucoup plus important qu'en 2007 (10 à 12 μ gP/L dans les 50 premiers mètres) et 2008 (figures 8 et 27). Les concentrations en phosphore réactif soluble restent identiques jusqu'à 150 m lors de la campagne suivante au début mars. Elles chutent ensuite lors de la campagne du 17 mars, ce qui coïncide avec l'augmentation de l'activité photosynthétique du phytoplancton (TADONLEKE, 2010). La figure 9 permet d'observer la consommation du phosphore réactif soluble par l'activité phytoplanctonique printanière. La concentration dans les couches superficielles diminue jusqu'à l'état de trace le 21 avril avec moins de 5 μ gP/L jusqu'à 20 m. L'épaisseur de cette couche à faible concentration de phosphate augmente au cours de l'année pour atteindre 50 m en décembre. La figure 27 montre que depuis 2007, cette couche est significativement plus importante qu'entre 1996 et 2006. L'activité phytoplanctonique est, comme précédemment, limitée par la concentration en phosphore réactif soluble de la zone trophogène.

La figure 10 représente l'évolution depuis 1996 du stock en phosphore total et en phosphore réactif soluble dans les couches 0-50 m et 0-30 m, soit dans les couches où il est disponible pour l'activité phytoplanctonique. Le stock en phosphore réactif soluble, directement biodisponible, en 2009 est dans la tendance globale de diminution depuis 1996 mais est plus important que les deux années précédentes. Cette évolution est dépendante de l'intensité des brassages de l'année en cours et de l'année précédente mais n'est pas affectée par le phénomène de relargage. Le stock de phosphore disponible est plus explicatif de l'activité phytoplanctonique et son évolution à long terme est plus cohérente avec l'évolution des moyennes annuelles de production primaire et de chlorophylle a que l'évolution du stock total, année exceptionnelle de 2007 mise à part (cf. figure 3, TADONLEKE, 2010).

Le comportement des autres nutriments suit celui du. Les concentrations en surface en azote nitrique augmentent depuis la fin de l'hiver 2008 pour atteindre un maximum lors du brassage avec 510 µgN/L jusqu'à 200 m le 16 février, soit une concentration moyenne identique à celle de 2008, mais sur une couche plus importante. Comme pour le phosphore réactif soluble, la concentration en azote nitrique commence à décroître en surface à partir du 17 mars, cette consommation atteint faiblement 20 m (cf. figure 11).

Les figures 12 et 14 indiquent une évolution temporelle similaire pour la concentration de silice. Elle atteint 1.6 mg/L en moyenne jusqu'à 150 m jusqu'en début mars. Puis sa concentration diminue fortement dès l'augmentation de l'activité phytoplanctonique observée vers le 17 mars. La concentration en silice dissoute restera très faible (inférieure à 1.0 mg/L) à partir du 21 avril jusqu'à la fin de l'année en surface. L'épaisseur de la couche inférieure à 1.0 mg/L atteint 35 m en fin d'année.

Les concentrations en carbone organique observées en surface sont cohérentes avec l'évolution temporelle des concentrations des nutriments. Elles augmentent en surface de 0.9 à 1.1 mgC/L le 17 mars, puis continuent d'augmenter pour osciller entre 1.4 et 1.5 jusqu'en octobre, avec un maximum en septembre de 2.1 mgC/L à 10 m.

Sur la figure 19, le carbone organique particulaire, produit par la photosynthèse, augmente aussi à partir du 17 mars, tout comme l'azote et le phosphore particulaires. Le carbone particulaire présente un maximum important en fin septembre.

L'activité phytoplanctonique observée entraîne d'une part la consommation des nutriments pour la production de biomasse chlorophylienne (figure 15) et d'autre part une diminution brutale de la transparence qui passe de 12.5 m le 2 mars à une valeur minimale de 2.5 m le 21 avril, qui est plus faible qu'en 2008 (3.8 m) (figure 13). Ce minimum de transparence correspond à une prédominance de nanophytoplancton (RIMET, 2010).

L'augmentation de la concentration en oxygène dissous est aussi une conséquence de l'activité phytoplanctonique. Cette augmentation est significative entre le 2 mars et le 17 mars avec 11.7 mgO₂/L en surface. La sursaturation en oxygène est plus importante qu'en 2008, principalement entre 0 et 10 m, elle atteint un maximum de 16.1 mgO₂/L (figures 15 et 16). Cette concentration maximale est très supérieure à l'année précédente et du même ordre qu'en 2007 et 2006.

Suite à cette activité phytoplanctonique printanière, la phase des eaux claires apparaît nettement avec une réaugmentation de la transparence le 12 mai et un maximum de 10.9 m le 25 mai. Cette phase des eaux claires correspond à la consommation du phytoplancton par le zooplancton (PERGA et LAINE, 2010).

L'activité zooplanctonique entraîne une augmentation de la concentration en azote ammoniacal (excrétions, mais aussi excrétions des poissons, dégradation de la matière organique,...)(figure 17). Il est ainsi possible d'observer l'évolution de cette activité dans les couches superficielles. Les concentrations en azote ammoniacal sont très importantes pendant cette phase avec un maximum de 43 µgN/L à 15 m le 25 mai.

Durant la phase des eaux claires, les concentrations en phosphore, carbone et azote particulaires et le carbone organique total diminuent. Elles réaugmentent lors de la campagne du 18 juin.

Avec la reprise de l'activité phytoplanctonique le 18 juin, la transparence diminue à nouveau jusqu'au mois d'octobre et remonte à 10 m en novembre et décembre.

Le phosphore réactif soluble reste à l'état de trace jusqu'à la fin de l'année. La silice réactive et l'azote nitrique recommencent à augmenter en novembre, ce qui entraîne une augmentation du rapport de l'azote minéral sur le phosphore réactif soluble (figure 18). De la même manière, le carbone organique total redescend à des concentrations comparables à celles du début d'année.

Après la phase des eaux claires, l'activité phytoplanctonique a repris de manière intense jusqu'au mois d'octobre. Entre septembre et octobre, le carbone organique total et le carbone particulaire présentent de très fortes concentrations. Ces pics correspondent à la très forte biomasse de *Mougeotia gracillima* (RIMET, 2010).

Figure 9 : Concentration of soluble reactive phosphorus ($P-PO_4^{3-}$) in the water of the surface layers (0, 5, 10, 15 and 20 m), Lake Geneva - Grand Lac (SHL2).

Figure 10 : Reserve of soluble reactive phosphorus (P-PO₄³⁻) and total phosphorus (Ptot) in the water of the surface layers (0-30 and 0-50 m) during the churning of the water from 1996 to 2009, Lake Geneva - Grand Lac (SHL2).

Figure 11 : Concentration en nitrate (N-NO₃⁻) des eaux des couches superficielles (0, 5, 10, 15 et 20 m), Léman - Grand Lac (SHL2).

- 40 -

Figure 13 : Transparence mesurée avec le disque blanc de 30cm de diamètre, Léman - Grand Lac (SHL2). Figure 13 : Transparency measured using a 30-cm diameter white disc, Lake Geneva - Grand Lac (SHL2).

Chlorophylle a (mgChla / m3) - Léman / Grand Lac (SHL 2) - 1996 à 2009

Concentration en chlorophylle a dans les différentes couches du Léman (Grand Lac - SHL2). Concentration of chlorophyll a in the various layers of Lake Geneva (Grand Lac - SHL2). Figure 15 : Figure 15 :

 Figure 17 : Concentration en azote ammoniacal des eaux des couches superficielles (0, 5, 10, 15 et 20 m), Léman - Grand Lac (SHL2).
 Figure 17 : Concentration of ammoniacal nitrogen in the water of the surface layers (0, 5, 10, 15 and 20 m), Lake Geneva - Grand Lac (SHL2).

Figure 18 : Rapport Nminéral / P-PO₄, Léman - Grand Lac (SHL2).

Figure 18 : Nmineral / P-PO₄ ratio, Lake Geneva - Grand Lac (SHL2).

- 46 -

Figure 19 : Concentrations of particulate organic carbon, nitrogen and phosphorus in the water of the surface layer (0-20 m) and the Nparticulate / Pparticulate, Lake Geneva - Grand Lac (SHL2).

4. ÉVOLUTION SAISONNIÈRE DANS LES COUCHES PROFONDES

Le brassage partiel a été plus important qu'en 2008 et a permis la réoxygénation de la colonne d'eau jusqu'à 150 m. Au fond, la concentration augmente de 4.11 mgO₂/L à un maximum de 5.34 mgO₂/L fin mai, du même ordre qu'en 2008.

L'activité microbienne dans l'hypolimnion entraîne la consommation de l'oxygène dissous lors de la dégradation de la matière organique. La concentration en oxygène dissous diminue graduellement jusqu'en fin d'année pour atteindre un minimum de 2.1 mgO₂/L le 7 décembre. Tout comme en 2008, malgré un brassage partiel, la désoxygénation du fond du lac, bien que significative, est moins importante que celles observées dans les années 80-90 (figure 22).

A partir du 13 août, la concentration du fond du lac en oxygène dissous est inférieure à $4.0 \text{ mgO}_2/\text{L}$ et le reste jusqu'à la fin de l'année (figure 20).

Cette désoxygénation entraîne plusieurs phénomènes propres à ces conditions réductrices : la réduction de certains métaux comme le manganèse et le fer, la formation d'azote ammoniacal, le relargage à partir des sédiments et des eaux interstitielles de phosphore et dans une moindre mesure de silice, ainsi qu'une augmentation de la turbidité du fait de ce relargage.

La concentration en phosphore total au fond du lac augmente à partir du mois de juillet pour atteindre un maximum de 117 μ gP/L le 9 septembre. Le maximum de phosphore réactif soluble est observé le 6 octobre avec 100 μ gP/L, en même temps que le maximum d'azote ammoniacal de 22 μ gN/L. Le relargage en phosphore est supérieur à 2008 et légèrement inférieur à 2007. Ces teneurs plus élevées sont liées aux concentrations en oxygène à l'interface sédiment - eau.

Figure 21 : Concentration of dissolved phosphorus (P-PO₄³⁻) in the water at the bottom of the lake, Lake Geneva - Grand Lac (SHL2).

Concentration of dissolved oxygen in the water of Lake Geneva (Grand Lac - SHL2) as a function of depth. Concentration en oxygène dissous des eaux du Léman (Grand Lac - SHL2) en fonction de la profondeur. Figure 22 : Figure 22 :

5. ÉVOLUTION INTERANNUELLE DES PRINCIPAUX PARAMÈTRES

Les concentrations moyennes pondérées et les stocks (cf. Annexes 1 et 2) pour l'ensemble du Grand Lac sont calculées à partir des mesures et des analyses effectuées sur les échantillons prélevés au centre du lac entre Lausanne et Evian (Grand Lac, point SHL 2 : figure 1).

5.1 Oxygène dissous

Les deux brassages complets consécutifs du lac en 2005 et 2006 ont entraîné un forte réoxygénation de la colonne d'eau avec en 2006 la réoxygénation la plus importante de ces 20 dernières années. Depuis, les brassages ont été partiels et n'ont pas permis la réoxygénation complète de la colonne d'eau. Cependant, en 2009 la moyenne annuelle en oxygène dissous est de 9.3 mgO₂/L, soit autant qu'une année avec un brassage complet. Il faut relever que les couches profondes avec déficit d'oxygène lors des années sans brassage complet ne représentent qu'une faible partie du volume d'eau total du Léman.

Sur les figures 20 et 23, la limite pointillée indique le seuil des 4 mgO₂/L correspondant aux exigences relatives à la qualité des eaux en Suisse. L'Annexe 2 de l'Ordonnance suisse sur la protection des eaux (OEaux) du 28 octobre 1998 stipule :

" Pour les lacs, il faut également que : la teneur en oxygène de l'eau ne soit, à aucun moment et à aucune profondeur, inférieure à 4 mg/L O₂; elle doit en outre suffire pour que les animaux moins sensibles, tels que les vers, puissent peupler le fond du lac durant toute l'année et en nombre aussi proche que possible de la densité naturelle. Les conditions naturelles particulières sont réservées."

La figure 24 indique l'évolution de l'épaisseur de la couche d'eau de concentration inférieure à $4.0 \text{ mgO}_2/\text{L}$ depuis 1957. Malgré le faible brassage, la désoxygénation du fond a été limitée.

Figure 23 : Concentration en oxygène dissous des eaux du fond, Léman - Grand Lac (SHL2).
 Figure 23 : Concentration of dissolved oxygen in the water at the bottom of the lake, Lake Geneva - Grand Lac (SHL2).

Figure 24 :Evolution de la profondeur de la limite à 4 mgO2/L dans le Léman - Grand Lac (SHL2).Figure 24 :Change in the depth of the 4 mgO2/L threshold in Lake Geneva - Grand Lac (SHL2).

Le stock moyen en phosphore total a diminué par rapport à l'an dernier, soit 1'955 tonnes de P (pour 2'370 tonnes de P en 2008), une concentration moyenne de 22.8 μ gP/L (figure 25). Il en est de même pour le stock d'phosphore réactif soluble : 1'650 tonnes de P soit 19.3 μ gP/L contre 21.4 μ gP/L en 2008.

Une réflexion concernant l'objectif à atteindre pour le phosphore dans le Léman est en cours dans le cadre de la CIPEL. Il s'agirait d'une fourchette allant de 15 μ gP/L à 10 μ gP/L. L'objectif à long terme devrait être plus faible que 15 μ gP/L pour limiter tout risque de production algale excessive.

La figure 27 indique l'évolution de la concentration en phosphate dans la couche 0 - 100 m depuis 1996. Cette figure indique un appauvrissement en phosphore de la zone superficielle à partir du début de l'activité phytoplactonique depuis trois ans.

Figure 25 : Change in weighted mean annual total phosphorus concentration and total phosphorus content of the Lake Geneva from 1957 to 2009 - Grand Lac (SHL2).

5.3 Transparence

L'évolution de la transparence depuis 1986 est représentée sur la figure 26. L'année 2009 indique une dynamique classique avec une importante transparence hivernale, une diminution lors de l'activité phytoplanctonique printanière, une période d'eaux claires significative et une diminution de la transparence liée à la reprise de l'activité phytoplanctonique.

Figure 26 : Evolution de la transparence mesurée avec un disque blanc de 30cm de diamètre de 1986 à 2009, Léman - Grand Lac (SHL2).

Concentration en phosphore réactif soluble (P-PO₄³) dans les différentes couches du Léman (SHL2) (zone jaune foncée = concentration supérieure à 20 μ gP/L; zone jaune claire = concentration entre 10 et 20 µgP/L). Figure 27 :

Concentration of soluble reactive phosphorus (P-PO₄³) in the various layers of Lake Geneva (SHL2) (zone shaded dark yellow = concentration > 20 µgP/L; zone shaded light yellow = concentration between 10 and 20 µgP/L). Figure 27 :

Les concentrations moyennes en azote total et en azote nitrique diminuent par rapport aux années précédentes. En 2008, la concentration moyenne en azote total est de 0.61 mgN/L, soit un stock de 51'860 tonnes de N. La concentration moyenne en azote nitrique est de 0.49 mgN/L, soit 2.13 mgNO₃/L (la norme d'eau de consommation en Suisse est de 40 mgNO₃/L et en France de 50 mgNO₃/L).

Ces valeurs sont les plus faibles observées depuis les années 1980 (figure 28).

5.5 Chlorure

Depuis le début des mesures du chlorure dans le Léman en 1971 (2.73 mg/L), la teneur du Grand Lac en chlorure est en augmentation quasi linéaire de 2 % par an. En 2009, le stock en chlorure est de 754'990 tonnes soit 8.81 mg/L, contre 8.65 mg/L en 2008. La concentration moyenne des apports, 9.38 mg/L cette année (RAPIN et KLEIN, 2010), se rapproche de la concentration moyenne du lac. Si les apports n'évoluent pas de manière importante, la concentration moyenne du lac s'approchera progressivement de la concentration moyenne des apports.

L'étude menée par GUMY et De ALENCASTRO (2001) indiquait que les concentrations du chlorure observées dans le Léman sont très inférieures aux valeurs toxiques citées dans la littérature. Elle montrait également que les principales sources du chlorure sont majoritairement l'industrie et les sels de déneigement.

Figure 29 : Change in the weighted mean annual concentration of chloride in the entire mass of the water of the lake from 1971 to 2009, Lake Geneva - Grand Lac (SHL2).

6. CONCLUSIONS

Les principales observations en 2009 sont :

- L'hiver 2008-2009 a été froid et a permis un brassage partiel des 150 premiers mètres. Il est plus important qu'en 2008.
- Le stock de phosphore réactif soluble disponible dans la couche 0-50 m lors du brassage est plus important que ceux des trois années précédentes.
- Le fond du lac a été faiblement réoxygéné mais de manière suffisante pour éviter un relargage de phosphore trop important en fin d'année.
- L'activité phytoplanctonique a redémarré très tôt en mars et le stock de phosphore dans les couches superficielles a été rapidement consommé et reste limitant jusqu'à la fin de l'année.
- Les différents indicateurs physico-chimiques de l'activité plytoplanctonique (transparence, sursaturation en oxygène dissous, formes particulaires organiques) indiquent une production primaire plus importante que l'année précédente.

Pour les stocks :

- Le stock en phosphore total continue de diminuer d'une année à l'autre, et la concentration moyenne se rapproche de 20 µgP/L.
- Le stock en chlorure a augmenté de 2 % après trois années de relative stabilité.
- Le stock en azote total baisse comme l'année précédente pour atteindre des valeurs faibles par rapport à la chronique.
- Remerciements : Nous tenons à remercier Aurélie HÉBERT, Danielle LACROIX et Pascal PERNEY, pour leur aide technique au niveau des analyses chimiques, et Pascal CHIFFLET et Jean-Christophe HUSTACHE pour l'échantillonnage sur le lac.

BIBLIOGRAPHIE

- BLANC, P., PELLETIER, J.P. et MOILLE, J.P. (1993) : Variabilité spatiale et temporelle des paramètres physico-chimiques et biologiques dans l'eau du Léman. Campagne 1992, 113-162 et 162b-162p.
- GUMY, D. et de ALENCASTRO, L.F. (2001) : Origine de la pollution du Léman par le chlorure. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2000, 261-278.

OEaux (1998) : Ordonnance sur la protection des eaux du 28 octobre 1998 (Suisse).

- PERGA, M.-E. et LAINE, L. (2010) : Evolution du zooplancton du Léman. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2008, 109-116.
- QUÉTIN, P. (2010) : Météorologie. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2009, 19-30.
- RAPIN, F. et KLEIN, A. (2010) : Les apports par les affluents au Léman et au Rhône à l'aval de Genève. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2009, 109-130.
- RIMET, F. (2010) : Phytoplancton du Léman. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2009, 77-88.
- STRAWCZYNSKI, A. (2010) : Analyses comparatives interlaboratoires. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2009, 153-163.
- TADONLEKE, R. (2010) : Production primaire et biomasse chlorophyllienne dans le Léman. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2009, 89-94.

Concentrations moyennes pondérées - Léman (Grand Lac - SHL2). Mean weighted concentrations - Lake Geneva (Grand Lac - SHL2).

ANNEXE 1

	eigniet		muane	/13 - LC					LZJ.				1	
	Oxygène	P tot.	PO_4	N tot.	Nmintot	NH_4	NO ₂	NO_3	CI	C.O.P	Npartic	Ppartic	Transpar	Transpar
Année	mg/l	µgP/l	µgP/l	µgN/l	µgN/l	µgN/l	µgN/l	µgN/l	mgCl/l	µgC/l	µgN/l	µgP/l	12 mois	mai-sept
													(en m)	(en m)
1957	9.66	12.4			266	0.3	1.0	265					10.80	6.74
1958	10.32	11.2			297	0.9	1.7	294					9.50	5.20
1959	9.59	10.4			312	0.3	1.1	311					9.70	6.74
1960	9.57	15.4			349	1.2	1.1	347					11.10	10.46
1961	9.36	20.0			366	3.4	0.9	362					9.50	8.06
1962	10.33	20.4			392	9.0	1.5	381					9.70	6.80
1963	10.30	34.7			314	6.0	1.5	306					9.80	6.26
1964	10.21	58.8			342	8.8	1.3	332					9.50	7.30
1965	10.25	56.8			391	4.4	1.3	385					9.50	7.10
1966	10 44	43.9			362	48	14	356					8 10	5 74
1967	9.72	27.0			314	21	1.0	311					9.80	6.30
1968	9.43	42.5			372	5.4	0.7	366					10.30	6.52
1060	0.1	41.7			354	4.2	1.1	340					0.60	7.24
1909	9.01	90.5	50 F		202	4.2	1.1	270					9.00	1.24
1970	9.69	00.5	50.5		303	2.9	1.3	379	0.70				0.03	4.00
1971	9.69	07.0	45.6		382	9.0	1.0	371	2.73				9.49	6.02
1972	9.25	/1.1	56.3		401	14.6	1.6	385	2.93				8.45	6.88
1973	9.36	80.5	66.1	574	412	13.8	2.4	396	3.16				9.33	5.48
1974	9.12	78.2	63.2	588	438	13.8	1.9	422	3.44				8.46	5.98
1975	8.96	84.0	66.1	606	447	10.6	1.9	434	3.66				7.30	3.78
1976	8.36	89.6	72.3	628	454	11.7	1.4	441	3.84				8.18	4.00
1977	8.31	89.4	74.0	608	468	11.2	1.8	455	4.05				7.95	5.18
1978	8.55	86.8	73.4	617	474	7.0	1.8	465	4.18				7.27	5.64
1979	8.93	89.5	74.0	641	466	5.5	1.5	459	4.35				10.42	5.86
1980	9.06	82.5	71.5	657	485	7.4	1.9	476	4.39				8.88	6.04
1981	9.32	82.6	71.6	688	507	8.0	1.1	498	4.53				8.10	5.80
1982	9.24	77.5	69.5	675	529	8.4	1.2	519	4.60				7.54	5.52
1983	9.19	75.4	67.3	693	560	10.2	1.2	549	4.70				8.23	6.04
1984	9.46	76.4	67.6	706	566	11.2	1.0	554	4.88				7.59	5.55
1985	9.54	73.1	65.0	734	571	14.0	0.6	556	5.12				8.44	4.94
1986	9.83	71.8	61.9	718	558	6.8	1.0	550	5.30	106.7	19.0	3.1	7.50	4.31
1987	9.62	67.7	58.3	713	573	6.6	0.8	566	5.40	72.9	14.0	2.9	8.00	4.70
1988	9.33	61.7	54.5	709	594	5.4	0.9	588	5.60	115.3	17.2	2.5	7.18	5.19
1989	8.65	58.3	51.7	712	605	5.6	0.9	598	5.68	93.3	14.2	2.1	8.85	6.22
1990	8.33	55.3	48.3	689	589	5.8	0.9	582	5.79	101.7	16.4	2.4	7.82	6.08
1991	8 49	52.3	45.3	660	580	5.9	0.9	572	6.00	91.5	15.1	2.5	7 79	5.86
1992	8.42	49.9	40.8	690	577	5.4	1.2	570	6 16	91.2	17.7	2.8	6.77	5 19
1002	8 20	40.0	40.0	656	581	3.7	0.9	577	6.18	88.1	13.3	2.0	8.24	5.10
1004	Q 22	۲۲.3 ۸۸ ۵	20.4	000	501	3.2	1.1	576	6.10	83 E	1/1 0	2.0	7 10	5.42
1005	0.00	44.0	39.4	667	500	ວ.ອ ວ F	1.1	573	6 47	00.0	14.0	2.2	7.10	5.07
1995	0.22	41.3	37.0	100	5/0	3.5	1.2	5/1	0.47	90.1	13.1	2.3	7.47	5.89
1996	8.27	40.9	30.0	180	5/5	4.5	1.1	569	0.08	107.4	22.3	2.3	1.17	4.56
1997	8.41	37.7	33.7	673	568	4.2	1.1	563	6.96	107.4	23.1	2.2	8.82	6.73
1998	8.26	39.6	35.2	658	557	5.1	0.9	551	7.06	100.3	22.1	2.2	7.36	5.65
1999	8.79	39.2	34.9	662	560	3.3	0.8	556	7.19	92.3	13.2	2.3	8.99	5.72
2000	9.09	36.5	31.8	629	550	2.9	1.3	546	7.42	109.8	14.7	2.5	7.42	4.96
2001	8.48	34.2	28.8	680	570	1.8	0.8	567	7.60	94.1	12.9	2.3	6.29	5.06
2002	8.45	34.0	29.5	659	547	2.1	0.8	544	7.85	97.1	11.2	2.0	6.78	4.28
2003	8.60	32.8	27.7	634	579	2.4	1.3	575	* 7.98	93.8	14.1	2.3	6.70	4.86
2004	9.10	29.5	26.1	698	609	2.0	1.3	605	8.12	94.6	14.9	2.5	7.14	5.95
2005	9.28	29.4	24.1	628	589	2.4	1.6	585	8.44	138.2	22.0	3.0	6.17	5.39
2006	9.80	27.7	22.6	671	591	2.5	1.2	587	8.61	107.5	19.6	2.4	7.01	6.57
2007	8.99	25.7	20.9	665	594	2.7	1.0	590	8.63	114.7	17.6	2.3	6.23	5.11
2008	8.86	27.6	21.4	635	531	3.3	1.5	526	8.65	103.4	11.9	2.1	8.13	6.30
2009	9.30	22.8	19.3	605	492	3.1	1.1	188	8.81	113.9	10.9	1.8	7.90	6.41

* : valeur interpolée

Stocks en tonnes - Léman (Grand Lac - SHL2).

ANNEXE 2

Total content in metric tons - Lake Geneva (Grand Lac - SHL2).

	Oxygène	P tot.	P-PO₄	N tot.	Nmintot	N-NH₄	N-NO ₂	N-NO ₃	CI	C.O.P.	P partic	N partic
Annee	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes
1957	827'900	1'150			22'824	25	109	22'690				
1958	883'900	960			25'370	75	145	25'150				
1959	822'000	890			26'733	30	93	26'610				
1960	819'800	1'320			29'931	105	96	29'730				
1961	802'000	1'720			31'370	290	80	31'000				
1962	885'200	1'750			37'527	770	127	36'630				
1963	883'100	2'970			26'839	510	129	26'200				
1964	874'900	5'050			29'275	750	115	28'410				
1965	878'500	4'870			33'459	375	114	32'970				
1966	894'400	3'760			31'071	415	116	30'540				
1967	823'700	2'320			26'887	180	87	26'620				
1968	808'300	3'640			31'888	465	63	31'360				
1969	772'100	3'580			30'403	360	93	29'950				
1970	830'600	6'920			32'804	245	109	32'450				
1971	830'500	5'790	3'910		32'668	770	138	31'760	237'000			
1972	792'400	6'090	4'830		34'426	1'255	141	33'030	251'000			
1973	801'900	6'900	5'660	49'180	35'306	1'185	201	33'920	271'000			
1974	781'700	6'700	5'420	50'350	37'544	1'180	164	36'200	295'000			
1975	767'500	7'200	5'670	51'970	38'292	905	167	37'220	314'000			
1976	716'800	7'670	6'200	53'820	38'916	1'000	116	37'800	329'000			
1977	712'100	7'660	6'340	52'140	40'115	960	155	39'000	347'000			
1978	732'300	7'440	6'290	52'860	40'558	595	153	39'810	358'000			
1979	765'500	7'670	6'340	54'970	39'929	470	129	39'330	372'000			
1980	776'200	7'070	6'130	56'270	41'574	635	159	40'780	376'000			
1981	798'600	7'080	6'130	58'970	43'490	680	90	42'720	388'000			
1982	791'600	6'640	5'950	57'830	45'274	720	104	44'450	394'000			
1983	787'600	6'460	5'760	59'360	48'000	875	105	47'020	403'000			
1984	810'200	6'550	5'790	60'500	48'488	965	83	47'440	418'000			
1985	817'600	6'260	5'570	62'970	48'855	1'205	50	47'600	439'000			
1986	842'600	6'150	5'300	61'500	47'812	580	72	47'160	454'000	9'138	262	1'630
1987	824'200	5'800	5'000	61'130	49'169	570	69	48'530	462'000	6'247	249	1'203
1988	799'940	5'290	4'665	60'750	50'882	458	74	50'350	480'200	9'882	217	1'472
1989	741'520	4'995	4'430	61'020	51'776	482	74	51'220	486'300	7'993	179	1'220
1990	714'200	4'740	4'145	59'000	50'460	493	77	49'890	496'200	8'715	209	1'400
1991	727'600	4'480	3'880	56'540	49'670	509	81	49'080	514'000	7'840	218	1'292
1992	721'550	4'275	3'495	59'150	49'389	464	105	48'820	528'300	7'811	241	1'515
1993	710'190	4'050	3'460	56'210	49'814	274	80	49'460	529'700	7'548	197	1'142
1994	714'185	3'835	3'380	56'550	49'701	334	92	49'275	538'930	7'166	185	1'203
1995	704'075	3'535	3'170	57'140	49'348	302	101	48'945	554'670	7'722	193	1'123
1996	708'680	3'505	3'085	58'350	49'205	382	93	48'730	572'410	9'205	198	1'913
1997	721'005	3'230	2'885	57'690	48'701	357	94	48'250	596'140	9'207	185	1'981
1998	707'750	3'395	3'020	56'430	47'764	434	80	47'250	604'630	8'596	186	1'897
1999	753'185	3'360	2'990	56'780	48'002	283	64	47'655	615'910	7'905	193	1'134
2000	778'880	3'130	2'725	53'910	47'815	250	115	47'450	635'650	9'413	212	1'263
2001	726'525	2'930	2'465	58'270	48'818	152	66	48'600	651'600	8'065	197	1'105
2002	724'005	2'915	2'530	56'460	46'875	178	67	46'630	672'320	8'322	172	962
2003	737'325	2'805	2'370	54'310	49'550	206	114	49'230	* 684'220	8'034	200	1'205
2004	779'535	2'530	2'235	59'790	52'161	174	107	51'880	696'130	8'108	217	1'280
2005	795'590	2'520	2'065	53'820	50'453	210	133	50'110	722'920	11'840	253	1'888
2006	839'395	2'370	1'940	57'460	50'588	211	98	50'280	738'040	9'210	204	1'594
2007	770'580	2'205	1'795	57'010	50'890	232	88	50'570	739'090	9'826	198	1'506
2008	759'470	2'370	1'835	54'420	45'465	285	129	45'050	740'860	8'864	177	1'018
2009	797'005	1'955	1'650	51'860	42'190	262	97	41'830	754'990	9'761	154	935

* : valeur interpolée

Incertitudes élargies * des principales analyses physico-chimiques. Expanded uncertainties of main physical and chemical analyses.

Paramètre	Unité	Incertitude élargie U (%)
NO ₃	mgN/L	6 %
NO ₂	mgN/L	6 %
NH ₄	mgN/L	6 %
Ntot	mgN/L	6 %
PO ₄	µgP/L	6 %
Ptotal	µgP/L	7 %
TOC	mgC/L	4 %
Са	mg/L	3 %
к	mg/L	4 %
Mg	mg/L	4 %
Na	mg/L	5 %
CI	mg/L	5 %
SO4	mg/L	3 %

* : Incertitudes calculées avec la validation des méthodes pour des valeurs proches des valeurs observées sur les échantillons de SHL2, avec un facteur d'élargissement de 2.